Glutathione peroxidase overexpression inhibits cytochrome C release and proapoptotic mediators to protect neurons from experimental stroke.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Ischemic injury and reperfusion increases superoxide (O2-) production and reduces the ability of neurons to scavenge free radicals, leading to the release of cytochrome c and apoptosis. Here we test whether overexpression with the use of gene therapy of the antioxidant glutathione peroxidase (Gpx), delivered before or after experimental stroke, is protective against ischemic injury. METHODS Sixty-two rats underwent middle cerebral artery occlusion for 1 hour. Defective herpes simplex viral vectors expressing Gpx/lacZ or lacZ alone (control) were delivered into each striatum 12 hours before or 2 or 5 hours after ischemia onset. RESULTS Striatal neuron survival at 2 days was improved by 36% when Gpx was delivered 12 hours before ischemia onset, 26% with a 2-hour delay, and 25% when delayed 5 hours. After ischemia, Gpx overexpression significantly reduced cytosolic translocation of cytochrome c and increased the proportion of Bcl-2-positive cells compared with cells transfected with control vector. Bax and activated caspase-3, while present in control-transfected neurons after ischemia, were rarely noted in Gpx-transfected cells. CONCLUSIONS Expression from these herpes simplex viral vectors begins 4 to 6 hours after injection, which suggests a 9- to 11-hour temporal therapeutic window for Gpx. This is the first study to show that overexpression of Gpx with the use of gene therapy protects against experimental stroke, even with postischemic transfection, and the neuroprotective mechanism involves attenuation of apoptosis-related events.
منابع مشابه
Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis.
Cytochrome c (cyt. c) is a proapoptotic factor that binds preferentially to cardiolipin (CL), a mitochondrial lipid, but not to cardiolipin hydroperoxide (CL-OOH). Cyt. c that had bound to CL liposomes was liberated on peroxidation of the liposomes by a radical. The generation of CL-OOH in mitochondria occurred before the release of cyt. c in rat basophile leukaemia (RBL)2H3 cells that had been...
متن کاملCytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age.
There is a loss of myocytes in the aging heart due to necrosis and apoptosis. Oxidative stress, an apoptosis-inducing signal, may also increase in the aging heart. Cytosol and mitochondria isolated from the left and right ventricle of the hearts of 6-, 16-, and 24-mo-old male Fischer 344 rats were used to measure key markers of apoptosis and to assess oxidative stress. Cytosolic cytochrome c co...
متن کاملHsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells.
Cellular stress may stimulate cell survival pathways or cell death depending on its severity. 6-Hydroxydopamine (6-OHDA) is a neurotoxin that targets dopaminergic neurons that is often used to induce neuronal cell death in models of Parkinson's disease. Here we present evidence that 6-OHDA induces apoptosis in rat PC12 cells that involves release of cytochrome c and Smac/Diablo from mitochondri...
متن کاملDominant-Negative c-Jun Promotes Neuronal Survival by Reducing BIM Expression and Inhibiting Mitochondrial Cytochrome c Release
Sympathetic neurons require nerve growth factor for survival and die by apoptosis in its absence. Key steps in the death pathway include c-Jun activation, mitochondrial cytochrome c release, and caspase activation. Here, we show that neurons rescued from NGF withdrawal-induced apoptosis by expression of dominant-negative c-Jun do not release cytochrome c from their mitochondria. Furthermore, we...
متن کاملPeroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease.
Damage of presynaptic mitochondria could result in release of proapoptotic factors that threaten the integrity of the entire neuron. We discovered that alpha-synuclein (Syn) forms a triple complex with anionic lipids (such as cardiolipin) and cytochrome c, which exerts a peroxidase activity. The latter catalyzes covalent hetero-oligomerization of Syn with cytochrome c into high molecular weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 34 10 شماره
صفحات -
تاریخ انتشار 2003